
Prepared for
Larry Lyu
Left Curve Software Limited

Prepared by
Nipun Gupta
AvrahamWeinstock
Zellic

April 1, 2025

Dango Account and Auth
Smart Contract Security Assessment

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Dango Account and Auth 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Denial of service for multi-sig accounts 11

3.2. No signature is required in RegisterUser 13

3.3. First nonce is required to be zero 14

4. SystemDesign 14

4.1. Component: factory 15

4.2. Component: multi 16

4.3. Component: spot 18

Zellic © 2025 ← Back to Contents Page 2 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

4.4. Component: auth 19

5. Assessment Results 20

5.1. Disclaimer 21

Zellic © 2025 ← Back to Contents Page 3 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2025 ← Back to Contents Page 4 of 21

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Left Curve Software Limited fromMarch 21st to March
28th, 2025. During this engagement, Zellic reviewed Dango Account and Auth's code for security
vulnerabilities, design issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Is it ensured that an unauthorized user cannot send transactions on someone else's
behalf?

• Is the nonce verification working as expected?
• Are the key/parameter updates working as expected (i.e., there are no unauthorized
access to these calls)?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody
• The margin account type and functionality specific to it not shared with other account
types, such as liquidation

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Dango Account and Auth crates, we discovered three
findings. No critical issues were found. Two findings were of high impact and the remaining finding
was informational in nature.

Zellic © 2025 ← Back to Contents Page 5 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 2

■ Medium 0

■ Low 0

■ Informational 1

Zellic © 2025 ← Back to Contents Page 6 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

2. Introduction 2.1. About Dango Account and Auth

Left Curve Software Limited contributed the following description of Dango Account and Auth:

Dango is an upcoming decentralized exchange, a novel limit order book, margin system, and
user experience. The scope of this audit is Dango’s account and authentication system.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the crates.

Nondeterminism. Nondeterminism is a leading class of security issues on Cosmos. It can
lead to consensus failure and blockchain halts. This includes but is not limited to vectors like
wall-clock times, map iteration, and other sources of undefined behavior (UB) in Go.

Arithmetic issues. This includes but is not limited to integer overflows and underflows,
floating-point associativity issues, loss of precision, and unfavorable integer rounding.

Complex integration risks. Several high-profile exploits have been the result of
unintended consequences when interacting with the broader ecosystem, such as via
IBC (Inter-Blockchain Communication Protocol). Zellic will review the project's potential
external interactions and summarize the associated risks. If applicable, wewill also examine
any IBC interactions against the ICS Specification Standard to look for inconsistencies,
flaws, and vulnerabilities.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"

Zellic © 2025 ← Back to Contents Page 7 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Zellic © 2025 ← Back to Contents Page 8 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

2.3. Scope

The engagement involved a review of the following targets:

Dango Account and Auth Crates

Type Rust

Platform Cosmos

Target left-curve

Repository https://github.com/left-curve/left-curve ↗

Version 17d6b0e71c2a990887a1d612933e7fbf606e7254

Programs account/{factory,multi,spot}/
auth/
types/src/{account,account_factory}/

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of 1.8 person-weeks. The assess-
ment was conducted by two consultants over the course of six calendar days.

Zellic © 2025 ← Back to Contents Page 9 of 21

https://github.com/left-curve/left-curve

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

Contact Information

The following project managers were associ-
ated with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Nipun Gupta
Engineer
nipun@zellic.io ↗

AvrahamWeinstock
Engineer
avi@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

March 21, 2025 Kick-off call

March 21, 2025 Start of primary review period

March 28, 2025 End of primary review period

Zellic © 2025 ← Back to Contents Page 10 of 21

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:nipun@zellic.io
mailto:avi@zellic.io

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

3. Detailed Findings 3.1. Denial of service for multi-sig accounts

Target auth

Category Business Logic Severity Critical

Likelihood Low Impact High

Description

When a user submits a transaction, it contains a uint32 nonce in themetadata. This nonce is used
to prevent replay attacks, and the function verify_nonce_and_signaturemakes sure that a nonce
is not already used. The function does that bymaking sure that the nonce provided by the user is
not already stored in the SEEN_NONCES storage and is bigger than the smallest nonce in this storage.
The relevant code is shown below:

SEEN_NONCES.may_update(ctx.storage, |maybe_nonces| {
let mut nonces = maybe_nonces.unwrap_or_default();

match nonces.first() {
Some(&first) => {

// If there are nonces, we verify the nonce is not yet
// included as seen nonce and it is bigger than the
// oldest nonce.
ensure!(

!nonces.contains(&metadata.nonce),
"nonce is already seen: {}",
metadata.nonce

);

ensure!(
metadata.nonce > first,
"nonce is too old: {} < {}",
metadata.nonce,
first

);

// Remove the oldest nonce if max capacity is reached.
if nonces.len() == MAX_SEEN_NONCES {

nonces.pop_first();
}

},
None => {

// Ensure the first nonce is zero.

Zellic © 2025 ← Back to Contents Page 11 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

ensure!(metadata.nonce == 0, "first nonce must be 0");
},

}

nonces.insert(metadata.nonce);

Ok(nonces)
})?;

A user could thus provide any value of nonce as long as it is greater than the smallest nonce and is
not already present in SEEN_NONCES.

Impact

As a user could provide any value of nonce, one of themembers of themulti-sig account could
create transactions with the 20 largest (because MAX_SEEN_NONCES is 20) values for uint32 such
that there are no new nonces left. This would lead to a denial of service for othermembers of the
multi-sig as they would not be able to create new transactions because there would not be any
acceptable nonce left.

Recommendations

We recommendmaking sure that the nonce is not increased by a large amount.

Remediation

This issue has been acknowledged by Left Curve Software Limited, and a fix was implemented in
PR #587 ↗.

Zellic © 2025 ← Back to Contents Page 12 of 21

https://github.com/left-curve/left-curve/pull/587

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

3.2. No signature is required in RegisterUser

Target factory

Category Business Logic Severity High

Likelihood Low Impact High

Description

To register a username, a user sends an IBC transfer with a deposit with the factory contract's
MINIMUM_DEPOSIT. Then, they send a transaction containing a single ExecuteMsg::RegisterUser
message to the factory contract, containing their desired username aswell as the key, key_hash,
and secret that determines the address forwhich the deposit is looked up. No signature is required
from key, despite it being a public key for which only the user has the corresponding private key.

Impact

Anyone observing the RegisterUsermessage before it is accepted into a block (e.g., nodes that
front-run, or non-node users if the registration fails due tomultiple registrations for the same
username in the same block) can submit a RegisterUsermessagewith the same key, key_hash,
and secretwith a different username to spend the user's deposit on an undesired username.

Recommendations

Require a signature of amessage containing the desired username.

Remediation

This issue has been acknowledged by Left Curve Software Limited, and a fix was implemented in
PR #583 ↗.

Zellic © 2025 ← Back to Contents Page 13 of 21

https://github.com/left-curve/left-curve/pull/583

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

3.3. First nonce is required to be zero

Target auth

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

In verify_nonce_and_signature, if there are no previously seen nonces, the nonce for the first
transaction is required to be zero.

None => {
// Ensure the first nonce is zero.
ensure!(metadata.nonce == 0, "first nonce must be 0");

},

Impact

If multiple transactions are submitted for a new account and arrive out of order, ones that are
processed before the onewith a nonce of zero will be incorrectly rejected.

Recommendations

Accept nonces in the range 0 ..= MAX_SEEN_NONCESwhen nonces.first() is None.

Remediation

This issue has been acknowledged by Left Curve Software Limited, and a fix was implemented in
PR #592 ↗.

Zellic © 2025 ← Back to Contents Page 14 of 21

https://github.com/left-curve/left-curve/pull/592

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

4. SystemDesign This provides a description of the high-level components of the system and how they interact,
including details like a function’s externally controllable inputs and how an attacker could leverage
each input to cause harm or which invariants or constraints of the system are critical andmust
always be upheld.

Not all components in the audit scopemay have beenmodeled. The absence of a component in
this section does not necessarily suggest that it is safe.

4.1. Component: factory

Description

The factory allows users to register their username, create accounts, and update keys/parameters.
There are four executemessages for these tasks.

Message: ExecuteMsg::RegisterUser

Thismessage calls the function register_userwith the provided username, secret, key, and
key_hash. The function first verifies that the provided username does not already exist and reverts
if it already does. Next, it saves the provided key and calls onboard_new_user, which generates the
address for the account, saves the account address and username, and creates amessage to
instantiate the account.

Message: ExecuteMsg::RegisterAccount

Thismessage calls the function register_accountwith the provided params. The function allows
users to register an account. It first performs some basic validation tomake sure that one can only
register accounts for themselves, and it then stores the new derived account address and saves
the address. Finally, it creates amessage to instantiate the account.

Message: ExecuteMsg::UpdateKey

Thismessage calls the function update_keywith the provided key_hash and key values. The
function is responsible for updating the key for an account. It first finds the username associated
with the caller and updates the KEYSmap.

Message: ExecuteMsg::UpdateAccount

Thismessage calls the function update_accountwith the provided updates. The function is
responsible for updating the account parameters for themulti-sig account.

Zellic © 2025 ← Back to Contents Page 15 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

Invariants

• During user registration, the usernamemust not already exist in the KEYSmap.
• When a user registers an account, they can only register an account for themselves.
• Formulti-sig accounts, the voting threshold should not be greater than total voting
power during registration and parameter updates.

• Key updates should only be allowed for a single signature account and notmulti-sigs.
• During a key update, there should at least be one key remaining for that username after
the update.

Test coverage

Cases covered

• Attempting to register an existing username fails.
• User onboarding and registration works as expected.
• User registrationmust fail if minimum deposit requirements are not met.
• Key updatesmust work as expected.

Cases not covered

• N/A.

Attack surface

Users should not be able to register accounts or update keys for others' accounts. This is enforced
bymaking sure that the username belongs to the ctx.sender and bymaking sure that keys are
only updated for the username belonging to ctx.sender, respectively.

Users should not be able to register a user using a username that already exists. This is enforced by
verifying that the KEYSmap does not contain the provided username already.

For amulti-sig account, it is important tomake sure that the account updates are for the correct
account. This is enforced by getting the accounts from the ACCOUNTSmap for the caller.

4.2. Component: multi

Description

This is themulti-sig account implementation. The following entry points are available for this
account type:

1. instantiate—can only be called by the account factory and is responsible for
instantiating themulti-sig account.

2. execute—can only be called by the contract itself.

Zellic © 2025 ← Back to Contents Page 16 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

3. query—used to read the state of the contract.

The authenticate function is used to perform the authentication for the transactions. The receive
function accepts incoming transfers.

There are three types of executemessages allowed:

1. ExecuteMsg::Propose—used to create a proposal.

2. ExecuteMsg::Vote— responsible for voting for/against a proposal.

3. ExecuteMsg::Execute—used to execute the proposal if it is passed.

Invariants

• The only type of transaction allowed is to execute itself. Other messages can only be
performed through proposals.

• If the action is to vote for a proposal, the voter username in ExecuteMsg::Votemust
match the signer username in Metadata.

• If the action is to vote, the voter/signermust be amember at the time the proposal was
created.

Test coverage

Cases covered

• Creating a proposal, voting, and execution are working as expected.
• Manual execution of the proposal is working as expected.
• If the proposal fails due to votes, the status of the proposal should be updated to
Status::Failed, and it should not be executed.

• Unauthorized voting fails.
• Unauthorizedmessages should fail.

Cases not covered

• N/A.

Attack surface

The unauthorized voting andmessage execution should always fail. These cases arewell-tested. A
user who has already voted should be able to vote again. This case is verified using the following
code:

ensure!(
!VOTES.has(ctx.storage, (proposal_id, &voter)),

Zellic © 2025 ← Back to Contents Page 17 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

"user `{voter}` has already voted in this proposal"
);

A proposal that has already been executed should not be allowed to be executed again. This is
verified bymaking sure that the state of the proposal during execution is Status::Passed and after
the execution it is updated to Status::Executed.

4.3. Component: spot

Description

Spot accounts, unlikemulti-sig accounts, are controlled by a single user. Their entry points are as
follows:

1. instantiate—checks that the sender is the factory contract and deducts the deposit.

2. authenticate—calls the authmodule's authenticate_tx (see section 4.4. ↗) to check
the user's signature on transactions to execute.

3. receive— succeeds unconditionally, approving incoming transfers.

4. reply—enforces that the account's current balance exceeds theminimum balance
after processingmessages.

Invariants

• The account's balancemust exceed the specifiedminimum.

Test coverage

Cases covered

• The factory tests implicitly test the functionality of spot accounts, since spot accounts
are the default account type.

Cases not covered

• N/A.

Attack surface

The authmodule ensures that transactions are signed directly or indirectly by the owner of the
account.

Zellic © 2025 ← Back to Contents Page 18 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

4.4. Component: auth

Description

The auth component consists of functions that the account contracts call to verify that
transactions are authorized by the account owner. Transactions contain nonces as a form of replay
prevention, but nonces are not required to be strictly sequential to allowmultiple in-flight
transactions. Note that the nonces used for replay prevention are not the same as the nonces used
in the cryptographic signatures: the Secp256k1 signing implementation internally uses RFC 6979
deterministic nonces.

Function: query_seen_nonces

The query_seen_nonces function returns the current set of SEEN_NONCES for the contract, and it is
called in response to QueryMsg::SeenNonces queries in themargin, multi, and spot account
contracts. These queries allow a client to query an account that it manages to determinewhich
nonces to use for future transactions.

Function: authenticate_tx

The authenticate_tx function is a wrapper around the verify_nonce_and_signature function
that first queries the factory contract to look up the username associated with the sender of the
transaction and then calls verify_nonce_and_signature.

Function: verify_nonce_and_signature

The verify_nonce_and_signature function checks that the transaction's nonce and signature are
valid in Check and Finalizemode and performs no checks in Simulatemode.

Function: verify_signature

The verify_signature function verifies that the provided signature is valid for the specified public
key andmessage. For Secp256k1 keys, the signature can be in either the EIP-712 format or a plain
Secp256k1 signature. For Secp256r1 keys, the signaturemust be in passkey format.

Invariants

• Atmost one transaction is accepted for each nonce.

Zellic © 2025 ← Back to Contents Page 19 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

Test coverage

Cases covered

• Passkey signatures, EIP-712 signatures, and Secp256k1 signatures are testedwith
standard credentials.

• Secp256k1 signatures are tested with session credentials.

Cases not covered

• Session credentials are not testedwith passkey or EIP-712 signatures.
• The error case of a signature type that does not match a key is not tested.

Attack surface

Function: verify_nonce_and_signature

The verify_nonce_and_signature function checks that the nonce is not present in SEEN_NONCES
— it is larger than the smallest nonce in SEEN_NONCES. If SEEN_NONCES is empty, the transaction's
noncemust be zero. It does not currently check that the nonce is not much higher than the largest
nonce in SEEN_NONCES (see Finding 3.1. ↗). It adds the new nonce to SEEN_NONCES, removing the
smallest nonce if it would exceed MAX_SEEN_NONCES elements.

It checks that if the transaction has an expiry set, the expiry does not exceed the block's timestamp.

The transaction specifies a credential that is either a Standard or Session credential, both of which
have a key_hash, which is used to look up the public key associated with that key_hash and
username.

For Session credentials, it checks that the session credentials' expiry does not exceed the block's
timestamp, that the long-term key signed the credential's session_info (which contains the
short-term session key and expiry timestamp), and that the short-term key signed themessage
authenticating the transaction. For Standard credentials, it checks that the user's long-term key
signed themessage authenticating the transaction.

Themessage authenticating the transaction, which is either signed directly by the user's long-term
key or by the short-term session key, consists of the chain ID and the transaction's nonce, gas limit,
sender, messages, andmetadata.

Zellic © 2025 ← Back to Contents Page 20 of 21

Dango Account and Auth Smart Contract Security Assessment April 1, 2025

5. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the dangomainnet.

During our assessment on the scoped Dango Account and Auth crates, we discovered three
findings. No critical issues were found. Two findings were of high impact and the remaining finding
was informational in nature.

5.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2025 ← Back to Contents Page 21 of 21

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Dango Account and Auth
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Denial of service for multi-sig accounts
	No signature is required in RegisterUser
	First nonce is required to be zero

	System Design
	Component: factory
	Component: multi
	Component: spot
	Component: auth

	Assessment Results
	Disclaimer

