Avraham Weinstock

Prepared by
Zellic

Gunhee Ahn

Left Curve Software Ltd.

Prepared for
Larry Lyu

Blockchain Security Assessment

October 22,2024

Grug

V= A=

AN A
LY
—
N
—
A\
s s
= =/
= f=
A\ A’
l\l ’. |\I
=
/= = - ‘-
A\ hY A\
=" - =» = =
|\4 |\I f\l ’\. |\/
- X = -
,— ‘- - = ‘-
V \/ V\I V\d V\J V\ﬂ
/= /- - /=
A A A A\
= = =N -
l\l l\d l\f
‘= /-
\ A
L LA
s V=
/\A l\d |\4 ’\A
vz) = vz
=N - 0 = V= =
-\ EAY -\ -\
AR A AR Sy] " = =

- - \l \4 = \/

4 i
\\4W ZeIIIC Grug Blockchain Security Assessment October 22,2024
Contents About Zellic 4

1. Overview 4
11 Executive Summary 5
1.2. Goals of the Assessment 5
1.3. Non-goals and Limitations 5
14. Results 5
2. Introduction 6
21 About Grug 7
2.2. Methodology 7
2.3. Scope 9
2.4. Project Overview 9
2.5. Project Timeline 10
3. Detailed Findings 10
3.1 Reachable unwrap panicin ics23_prove 1
3.2. Diem-style proof construction fails for the empty tree 16
4. Discussion 17
41. Property testing of ics23_prove 18
5. System Design 20
51. Keyoperations 21

Zellic © 2024 < Back to Contents Page 2 of 23

4ﬁ ZeIIIC Grug Blockchain Security Assessment October 22,2024

5.2. Security considerations 22
6. Assessment Results 22
6.1. Disclaimer 23

Zellic © 2024 < Back to Contents Page 3 of 23

Grug Blockchain Security Assessment October 22,2024

About Zellic

Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, and more.

Prior to Zellic, we founded the #1CTF (competitive hacking) team 2 worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

For more on Zellic's ongoing security research initiatives, check out our website zellic.io » and follow
@zellic_io »on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io 2.

1Z
N
)

Zellic © 2024

< Back to Contents Page 4 of 23

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Grug Blockchain Security Assessment October 22,2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Left Curve Software Ltd. from October 11th to October
18th, 2024. During this engagement, Zellic reviewed Grug's code for security vulnerabilities, design
issues, and general weaknesses in security posture.
1.2. Goals of the Assessment
In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

» Can an attacker generate a malicious proof?

» Can an attacker manipulate the state stored on the blockchain?

« Are there any vectors that can trigger a denial of service?

« Are all functions, including membership and nonmembership proofs, working properly

without any issues?

1.3. Non-goals and Limitations
We did not assess the following areas that were outside the scope of this engagement:

» Front-end components

« Infrastructure relating to the project

» Key custody
Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide. Additionally, as Grug is still a work in progress at the time
of writing, it is recommended to continue adding unit and property tests with new features, and to
have new features audited when they are complete.
1.4. Results
During our assessment on the scoped Grug crates, we discovered two findings. One critical issue
was found. The other finding was informational in nature.
Additionally, Zellic recorded its notes and observations from the assessment for the benefit of Left
Curve Software Ltd. in the Discussion section (4. 7).

Zellic © 2024 < Back to Contents Page 5 of 23

Grug Blockchain Security Assessment

October 22,2024

Breakdown of Finding Impacts

Impact Level Count
M Critical 1
B High 0

Medium 0
B Low 0

M Informational

Zellic © 2024

< Back to Contents

Page 6 of 23

Grug Blockchain Security Assessment October 22,2024

2. Introduction

21. About Grug

Left Curve Software Ltd. contributed the following description of Grug:

Grug is an execution environment for blockchains. The scope of this audit is the state commit-
ment scheme that Grug uses, the Jellyfish Merkle Tree (JMT).

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
both automated testing and manual review. These processes can vary significantly per engagement,
but the majority of the time is spent on a thorough manual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, we may also employ sophisticated analyzers such as model
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the crates.

Nondeterminism. Nondeterminism is a leading class of security issues on Cosmos. It can
lead to consensus failure and blockchain halts. This includes but is not limited to vectors like
wall-clock times, map iteration, and other sources of undefined behavior (UB) in Go.

Arithmetic issues. This includes but is not limited to integer overflows and underflows,
floating-point associativity issues, loss of precision, and unfavorable integer rounding.

Complex integration risks. Several high-profile exploits have been the result of
unintended consequences when interacting with the broader ecosystem, such as via
IBC (Inter-Blockchain Communication Protocol). Zellic will review the project's potential
external interactions and summarize the associated risks. If applicable, we will also examine
any IBC interactions against the ICS Specification Standard to look for inconsistencies,
flaws, and vulnerabilities.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that the mostimportant findings come first in the document, rather
than being strictly ordered on impact alone. Thus, we may sometimes emphasize an "Informational”

Zellic © 2024

< Back to Contents Page 7 of 23

Grug Blockchain Security Assessment October 22,2024

finding higher than a"Low" finding. The key distinction is thatalthough certain findings may have the
same impact rating, their importance may differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or
are not directly related to the scoped crates itself. These observations — found in the Discussion
(4. 7) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024

< Back to Contents Page 8 of 23

4ﬁ ZeIIIC Grug Blockchain Security Assessment October 22,2024

2.3. Scope

The engagement involved a review of the following targets:

Grug Crates

Type Rust

Platform Cosmos

Target left-curve

Repository https:/github.com/left-curve/left-curve =
Version 64e311bcb5c0df657be533432e02ed6a0371ef08
Programs grug/jellyfish-merkle

grug/db-disk

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of 1.8 person-weeks. The assess-
ment was conducted by two consultants over the course of 1.2 calendar weeks.

Zellic © 2024 < Back to Contents Page 9 of 23

https://github.com/left-curve/left-curve

Grug Blockchain Security Assessment

October 22,2024

Contact Information

The following project managers were associ- The following consultants were engaged to
ated with the engagement: conduct the assessment:
Jacob Goreski Gunhee Ahn
¥+ Engagement Manager ¥+ Engineer
jacob@zellic.io ~ gunhee@zellic.io #
Chad McDonald Avraham Weinstock
¥+ Engagement Manager ¥+ Engineer
chad@zellic.io # avi@zellic.io #

2.5. Project Timeline

The key dates of the engagement are detailed below.
October 11,2024 Kick-off call
October 11,2024 Start of primary review period

October 18,2024 End of primary review period

Zellic © 2024

< Back to Contents

Page 10 of 23

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:gunhee@zellic.io
mailto:avi@zellic.io

4? ZeIIIC Grug Blockchain Security Assessment October 22,2024

3. Detailed Findings 3.1. Reachable unwrap panicin ics23_prove
Target grug/db-disk/src/db.rs
Category Coding Mistakes Severity Critical
Likelihood High Impact Critical
Description

The ics23_prove function attempts to generate an |CS-23 proof 2 of membership or nonmember-
ship of a given key in Grug's state based on whether or not the key is present or absent.

It checks if there is a corresponding value for the key in the state_storage RocksDB table, and if
there s, itreturns a proof of membership. However, if there is no corresponding value, it will attempt
to generate anonmembership proof, which consists of membership proofs for neighboring keys that
would be adjacent to the given key if it were present.

To find these neighboring keys, it attempts to query the preimages RocksDB table (which contains
mappings from hashes of keys to keys) to find the next and previous keys to the queried key ordered
by hash value. It then obtains the value of those keys in the state_storage table, assuming they
exist, and generates membership proofs for them.

let proof = match state_storage.read(&key) {
// Value is found. Generate an ICS-23 existence proof.
Some(value) =>
CommitmentProofInner::Exist(generate_existence_proof(key, value)?),
// Value is not found.
//
// Here, unlike Diem or Penumbra's implementation, which walks the
// tree to find the left and right neighbors, we use an approach
// similar to SeiDB's:
// https://github.com/sei-protocol/sei-
db/blob/v0.0.43/sc/memiavl/proof.go#L41-L76
//
// We simply look up the state storage to find the left and right
// neighbors, and generate existence proof of them.
None => {
let cf = cf_preimages(&self.inner.db);
let key_hash = key.hash256();

new_read_options(Some(version), None, Some(&key_hash));
self

let opts
let left

Zellic © 2024 < Back to Contents Page 11 0of 23

https://github.com/cosmos/ibc/blob/main/spec/core/ics-023-vector-commitments/README.md

Grug Blockchain Security Assessment October 22,2024

let opts

.inner

.db

.iterator_cf_opt(&cf, opts, IteratorMode::End)
.next()
.map(lres!| {

})

let (_, key) = res?;
let value = state_storage.read(&key).unwrap();
generate_existence_proof(key.to_vec(), value)

.transpose()?;

= new_read_options(Some(version), Some(&key_hash), None);
let right = self
.inner
.db

.iterator_cf_opt(&cf, opts, IteratorMode::Start)
.next()
.map(lresl {

})

let (_, key) = res?;
let value = state_storage.read(&key).unwrap();
generate_existence_proof(key.to_vec(), value)

.transpose()?;

CommitmentProofInner::Nonexist(NonExistenceProof { key, left,

right })
b
be

However, the commit function can delete the keys and values inserted in the state_storage and
state_commitment tables without deleting their corresponding key hashes in the preimages table.

// Writes in state commitment
let cf = cf_state_commitment(&self.inner.db);
for (key, op) in pending.state_commitment {
if let Op::Insert(value) = op {
batch.put_cf(&cf, key, value);

} else {

batch.delete _cf(&cf, key);

// Writes in state storage (note: don't forget timestamping)
let cf = cf_state_storage(&self.inner.db);

Zellic © 2024

< Back to Contents

Page 12 of 23

l H
A
>N ZeIIIC Grug Blockchain Security Assessment October 22, 2024

for (key, op) in pending.state_storage {

if let Op::Insert(value) = op {
batch.put_cf_with_ts(&cf, key, ts, value);
} else {
batch.delete_cf_with_ts(&cf, key, ts);

Because of this, the keys can be absent from the state_storage table despite the preimages re-
maining present, causing the unwraps to panic in the process of finding the neighboring nodes.

This is demonstrated by the following test:

#[test]

fn ics23_prove_delete() {

let
let
let

Op:
1))
let
let
let
Op:
let
let

path = TempDataDir::new("_grug_disk_db_ics23_delete");

db = DiskDb::open(&path).unwrap();

(_, maybe_root) = db.flush_and_commit(Batch::from([
(b"m".to_vec(), Op::Insert(b"m".to_vec())), (b"a".to_vec(),

:Insert(b"a".to_vec()))
.unwrap();

root = maybe_root.unwrap().to_vec();
to_prove = b"L";
(_, maybe_root) = db.flush_and_commit(Batch::from([(b"a".to_vec(),

:Delete)])).unwrap();

root = maybe_root.unwrap().to_vec();
proof = db.ics23_prove(to_prove.to_vec(), None).unwrap();

println! ("{:?}", proof);

assert!(ics23::verify_non_membership::<HostFunctionsManager>(&proof,
&ICS23_PROOF_SPEC, &root, to_prove));

Impact

As nonmembership proofs are requested in the process of handling ICS-4 packet time-outs, this will
result in periodic crashes / denial of service whenever the hash of a packet-receipt path is adjacent
to a deleted key.

Additionally, the use of SeekToLast with an upper bound smaller than the last key is
undefined by RocksDB =, and this is the current behavior with set_iterator_upper_bound (in

new_read_options)and IteratorMode: :End.

Zellic © 2024 < Back to Contents Page 13 of 23

https://github.com/facebook/rocksdb/wiki/Iterator#iterating-upper-bound-and-lower-bound

4F ZeIIIC Grug Blockchain Security Assessment October 22,2024

Recommendations

We recommend addressing the panic by using . find_map in place of .next() .map, with error han-
dling changed to skip over preimages that are no longer present in the state, and addressing the
RocksDB undefined behavior by using IteratorMode: : Fromand not using lower and upper bounds.

The following patch applies the above suggestions to i¢cs23_prove:

let c¢f = cf_preimages(&self.inner.db);
let key_hash = key.hash256();

let opts = new_read_options(Some(version), None, Some(&key_hash));
let opts = new_read_options(Some(version), None, None);

let left = self
.inner
.db

.iterator_cf_opt(&cf, opts, IteratorMode::End)
.next()
.map(lresl {
let (_, key) = res?;
let value = state_storage.read(&key).unwrap();
generate_existence_proof(key.to_vec(), value)
.iterator_cf_opt(&cf, opts, IteratorMode::From(&key_hash, rocksdb::
Direction::Reverse))
.find_map(lres!| {
let key = match res {
Ok((_, key)) => key,
Err(e) => return Some(Err(DbError::from(e))),
g
let value = state_storage.read(&key)?;
Some (generate_existence_proof(key.to_vec(), value))
})

.transpose()?;

let opts = new_read_options(Some(version), Some(&key_hash), None);
let opts = new_read_options(Some(version), None, None);

let right = self
.inner
.db

.iterator_cf_opt(&cf, opts, IteratorMode::Start)
.next()
.map(lresl {

Zellic © 2024 < Back to Contents Page 14 of 23

Grug Blockchain Security Assessment

October 22,2024

let (_, key) = res?;
let value = state_storage.read(&key).unwrap();
generate_existence_proof(key.to_vec(), value)
.iterator_cf_opt(&cf, opts, IteratorMode::From(&key_hash,
Direction::Forward))
.find_map(lres!| {
let key = match res {
Ok((_, key)) => key,
Err(e) => return Some(Err(DbError::from(e))),
g
let value = state_storage.read(&key)?;
Some (generate_existence_proof(key.to_vec(), value))
})

.transpose()?;

rocksdb: :

Additionally, we recommend removing keys from the preimages table when they are removed from
the state_storage table to conserve space and improve the efficiency of iterating to find neighbor-

ing nodes.

Remediation

This issue has been acknowledged by Left Curve Software Ltd., and fixes were implemented in the

following commits:

. A

. A

Zellic © 2024

< Back to Contents

Page 15 of 23

https://github.com/left-curve/left-curve/commit/5fe90299cd295c5a8357914f2ea12ca026b9857b
https://github.com/left-curve/left-curve/commit/3d2c627d0e944a1704acabe561f49c7088e34102

4F ZeIIIC Grug Blockchain Security Assessment October 22,2024

3.2. Diem-style proof construction fails for the empty tree

Target grug/jellyfish-merkle/src/tree.rs

Category Coding Mistakes Severity Informational

Likelihood N/A Impact Informational
Description

The MerkleProof: :prove function for constructing Diem-style proofs of nonmembership returns
an error when attempting to look up the root node in the empty tree. This is demonstrated by the

following test:

#[test]
fn test_removal_nonmembership() {
let mut storage = MockStorage::new();
TREE.apply_raw(&mut storage, 0, 1, &Batch::from([(b"a".to_vec(),
Op::Insert(b"a".to_vec()))1)).unwrap();
TREE.apply_raw(&mut storage, 1, 2, &Batch::from([(b"a".to_vec(),
Op::Delete)])).unwrap();
let proof = TREE.prove(&storage, b"a".hash256(), 2);
assert! (matches! (proof, Ok(Proof::NonMembership(_))), "{:?}", proof);

Impact

As Diem-style proofs are not used for IBC, this does not risk funds being locked by failure to prove
an ICS-4 packet time-out. However, Diem-style proofs are constructed through ABCI "/store"
queries, which willincorrectly return an error instead of successfully returning a nonexistence proof

if the store is empty.

Recommendations

Use aninternal node with neither child present to represent the empty tree in proof construction and

verification instead of permitting the root to be absent.

Zellic © 2024 < Back to Contents Page 16 of 23

4ﬁ ZelIIC Grug Blockchain Security Assessment October 22,2024

Remediation

Thisissue has been acknowledged by Left Curve Software Ltd., and a fix was implemented in commit
2.

Zellic © 2024 < Back to Contents Page 17 of 23

https://github.com/left-curve/left-curve/commit/58da8b70b83db3afa78484e5c46b663d0cc5b53f

Grug Blockchain Security Assessment October 22,2024

4. Discussion

The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey that we
are suggesting a code change.

Property testing of ics23_prove

The following property test consists of multiple batches of insertions and deletions in a pattern that
covers every case of applying operations to a tree, except for those explicitly marked as unreachable.
We recommend its inclusion in the test suite to mitigate potential future bugs as the code evolves.

proptest! {

#[test]
fn proptest_apply_ics23prove(
(batchl, removals_batchl) in prop::collection::hash_map("[a-z]{1,10}",
"[a-z]{1,10}", 1..100).prop_flat_map(lbatchll {
let len = batchl.len();

(Just(batchl),
prop::collection::vec(any::<prop::sample::Selector>(), 0..len))
3,
batch2 in prop::collection::hash_map("[a-z]{1,10}", "[a-z]{1,10}",
1..100),

removals_batch2 in
prop::collection::vec(any::<prop::sample::Selector>(),
0..50)
) {
let path = TempDataDir::new("_grug_disk_db_apply_ics23prove");
let db = DiskDb::open(&path).unwrap();
use std::collections: :BTreeMap;
let mut state = BTreeMap::new();
let (_, maybe_root)
= db.flush_and_commit(Batch::from(batchl.clone().into_iter().map(l(k,
v)l (k.into_bytes(),
Op::Insert(v.into_bytes()))).collect::<BTreeMap<
let root0 = maybe_root.unwrap().to_vec();
for (k, v) in batchl.iter() {
state.insert(k.clone().into_bytes(), v.clone().into_bytes());

>>())).unwrap();

}
for (k, v) in state.iter() {
let proof = db.ics23_prove(k.clone(), None).unwrap();
assert!(matches!(proof, ics23::CommitmentProof { proof:
Some(ics23::commitment_proof::Proof::Exist(_)) }));
assert!(ics23::verify_membership::<HostFunctionsManager>(&proof,
&ICS23_PROOF_SPEC, &root0O, &k, &v));
}

Zellic © 2024

< Back to Contents Page 18 of 23

4? ZeIIIC Grug Blockchain Security Assessment October 22,2024

let (_, maybe_root)
= db.flush_and_commit(Batch::from(removals_batchl.iter().map(Irl
(r.select(&batchl).0.clone().into_bytes(),
Op::Delete)).collect::<BTreeMap<_,_>>())).unwrap();
let rootl = maybe_root.unwrap().to_vec();
for r in removals_batchl.iter() {
let pre_k = r.select(&batchl).0;
let k = pre_k.clone().into_bytes();
state.remove (&k);
let proof = db.ics23_prove(k.clone(), Some(0)).unwrap();
assert! (matches! (proof, ics23::CommitmentProof { proof:
Some(ics23::commitment_proof::Proof::Exist(_)) }), "proof: {:?}, k: {:?}",
proof, pre_k);
assert!(ics23::verify_membership::<HostFunctionsManager>(&proof,
&ICS23_PROOF_SPEC, &rootO, &k, &batchl[pre_k]l.clone().into_bytes()));
let proof = db.ics23_prove(k.clone(), None).unwrap();
assert! (matches! (proof, ics23::CommitmentProof { proof:
Some(ics23::commitment_proof::Proof::Nonexist(_)) }));

assert!(ics23::verify_non_membership::<HostFunctionsManager>(&proof,
&ICS23_PROOF_SPEC, &rootl, &k));
}
let batch_batch2 = Batch::from(
removals_batch2.iter().map(lrl
(r.select(&batchl).0.clone().into_bytes(),
Op::Delete))
.chain(batch2.clone().into_iter().map(l(k, v)I (k.into_bytes(),
Op::Insert(v.into_bytes()))))
.collect::<BTreeMap<_,_>>()
D5
let (_, maybe_root) = db.flush_and_commit(batch_batch2).unwrap();
let root2 = maybe_root.unwrap().to_vec();
for r in removals_batch2.iter() {
let pre_k = r.select(&batchl).0;
let k = pre_k.clone().into_bytes();
state.remove (&k);
if !batch2.contains_key(pre_k) {
let proof = db.ics23_prove(k.clone(), None).unwrap();
assert!(matches!(proof, ics23::CommitmentProof { proof:
Some (ics23::commitment_proof::Proof::Nonexist(_)) }));

assert!(ics23::verify_non_membership::<HostFunctionsManager>(&proof,
&ICS23_PROOF_SPEC, &root2, &k));
}
}
for (k, v) in batch2.iter() {
state.insert(k.clone().into_bytes(), v.clone().into_bytes());

Zellic © 2024 < Back to Contents Page 19 of 23

4? ZeIIIC Grug Blockchain Security Assessment October 22,2024

}
for (k, v) in state.iter() {
let proof = db.ics23_prove(k.clone(), None).unwrap();
assert!(matches!(proof, ics23::CommitmentProof { proof:
Some(ics23::commitment_proof::Proof::Exist(_)) }));
assert!(ics23::verify_membership::<HostFunctionsManager>(&proof,
&ICS23_PROOF_SPEC, &root2, &k, &v));
}

This recommendation has been acknowledged by Left Curve Software Ltd., and a similar test was
incorporated in commit 148fa0a6 2.

Zellic © 2024 < Back to Contents Page 20 of 23

https://github.com/left-curve/left-curve/commit/148fa0a6e90ed4deca95414bcaa4fa407ecbd95a

Grug Blockchain Security Assessment October 22,2024

5. System Design

This provides a description of the high-level components of the system and how they interact, in-
cluding details like a function’s externally controllable inputs and how an attacker could leverage
each input to cause harm or which invariants or constraints of the system are critical and must al-
ways be upheld.

Not all components in the audit scope may have been modeled. The absence of acomponentin this
section does not necessarily suggest that it is safe.

51. Key operations

The Merkle tree proof and its state storage in Grug are primarily managed by the code under
grug/src/jellyfish-merkle/srcandgrug/src/db-disk/src.

The key operations within our audit scope are as follows:

1. Applying batches of operations to the Merkle tree. These functions apply batches of
operations produced by block processing, which consist of key-value pairs to insert or
delete, to the Merkle tree. Applying batches of operations to the database is done in the
ABCI FinalizeBlock handler, and they are committed to the database in the ABCI Commit
handler.

2. 1CS-23 proof generation. These functions implement generation of membership and
nonmembership proofs for Grug's state in the ICS-23 format used by IBC. ICS-23 proofs
are used for connection, channel, and packet managementin the ICS-2, ICS-3, and ICS-4
standards.

Applying batches of operations to the Merkle tree

The application of batch operations resulting from block processing is performed through the
flush_but_not_commit function, which calls MERKLE_TREE.apply_raw(...). This function takes
four parameters — storage, old_version, new_version, and batch — and invokes the Merkle-
Tree::apply function. The apply function takes the same parameters as apply_raw, except the
keys in the batch must have been hashed and sorted by the caller.

The apply function marks the root node of o1d_versionas orphanedifit exists in the nodes, starting
fromnew_version. Then,theMerkleTree: :apply_at functionisusedtoapply the appropriate batch
operation based on the state of the node at the bits position.

« Ifitis a leaf node, the MerkleTree: :apply_at_leaf function is called, which applies a
single insertion/deletion in place, or it creates a subtree if there are multiple insertion-
s/deletions to apply to the leaf's position.

« If it is an internal node, the MerkleTree: :apply_at_internal function is called, which
partitions the batch into operations that apply to the left/right subtree, and it recurses
into those by callingMerkleTree: :apply_at_child.

« |fthe node does not exist, the MerkleTree: :create_subtree function is used to create a
subtree.

Zellic © 2024

< Back to Contents Page 210f 23

Grug Blockchain Security Assessment October 22,2024

After each function completes its assigned role, the state of the node after the operation is saved,
and a flush is performed to record this in the state_commitment function.

ICS-23 proof generation

The DiskDb::ics23_prove function generates proofs that key-value pairs are present or absent
from Grug's state. Itis intended to be called from IBC packet-processing code, which does not yet
appear to be implemented. This function takes two parameters: key and version. It verifies whether
the version is valid (i.e., not greater than the latest version or smaller than the oldest version) and re-
trieves the appropriate state storage for the given version.

If the state storage contains a value corresponding to the key, membership proofis performed using
the key via a call to MerkleTree: :ics23_prove_existence. If no value is found, a nonmembership
proofis conducted by searching neighboring nodes of the nonexistent key and generating member-
ship proofs for those neighboring nodes. This currently does not correctly account for neighbors
that may have been deleted; see Finding 3.1. .

To perform membership proofs, MerkleTree::ics23_prove_existence traverses child nodes
based on the hash of the node's key: if the bit at the current traversal index is 0, the left node is
traversed; if it is 1, the right node is traversed. This traversal method is similar to that of a Patricia
Merkle tree.

5.2. Security considerations

As the ICS-23 reference implementation is used to verify proofs generated by this process, and
since the keys are sorted by their hashes when being stored in the tree, soundness of the proofs
is provided by the upstream implementation (i.e., chains cannot equivocate between membership
and nonmembership of the same key for a given root hash).

Completeness issues arise from incorrect handling of deletions (as in Finding 3.1. 7).

As discussed in Finding 3.2. 7, the MerkleProof::prove function, which is used for Diem-style
proofs, fails to perform correct verification when attempting to query the root node in an empty tree,
also resulting in incompleteness for that proof format.

Zellic © 2024

< Back to Contents Page 22 of 23

Grug Blockchain Security Assessment October 22,2024

6. Assessment Results

At the time of our assessment, the reviewed code was not deployed.

During our assessment on the scoped Grug crates, we discovered two findings. One critical issue
was found. The other finding was informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommend multiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, and we encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024

< Back to Contents Page 23 of 23

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Grug
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Reachable unwrap panic in ics23_prove
	Diem-style proof construction fails for the empty tree

	Discussion
	Property testing of ics23_prove

	System Design
	Key operations
	Security considerations

	Assessment Results
	Disclaimer

